Evaluation
Simulated data
LatentDynamics.eval_prediction — Functioneval_prediction(m::odevae, data::simdata, n_future_tps::Int=1)Evaluate the prediction performance of the model on the latent representations.
Arguments
m::odevae: trainedodevaemodeltestdata:simdataobject containing the simulated datan_future_tps::Int=1: number of future time points to predict
Returns
Vectors of prediction errors of different models for each patient (summed over all time points):
ODEprederrs: vector of prediction errors for the ODE modelOLSprederrs: vector of prediction errors for an OLS model, also fitted in a piecewise manner similar to the ODE modelinterceptprederrs: vector of prediction errors of an intercept modellocfprederrs: vector of prediction errors of a LOCF model
LatentDynamics.eval_reconstructed_prediction — Functioneval_reconstructed_prediction(m::odevae, testdata::SMATestData, n_future_tps::Int=1)Evaluate the prediction performance of the model using the reconstructed data obtained from the decoder, based on simulated data.
Arguments
m::odevae: trainedodevaemodeltestdata:simdataobject containing the simulated datan_future_tps::Int=1: number of future time points to predict
Returns
Vectors of prediction errors of different models for each patient (summed over all time points):
ODEprederrs: vector of prediction errors for the ODE modelOLSprederrs: vector of prediction errors for an OLS model, also fitted in a piecewise manner similar to the ODE modelinterceptprederrs: vector of prediction errors of an intercept modellocfprederrs: vector of prediction errors of a LOCF model
SMArtCARE data
LatentDynamics.eval_prediction — Functioneval_prediction(m::odevae, testdata::SMATestData, n_future_tps::Int=1)Evaluate the prediction performance of the model on the latent representations.
Arguments
m::odevae: trainedodevaemodeltestdata:SMATestDataobject containing the SMArtCARE datan_future_tps::Int=1: number of future time points to predict
Returns
Vectors of prediction errors of different models for each patient (summed over all time points):
ODEprederrs: vector of prediction errors for the ODE modelOLSprederrs: vector of prediction errors for an OLS model, also fitted in a piecewise manner similar to the ODE modelinterceptprederrs: vector of prediction errors of an intercept modellocfprederrs: vector of prediction errors of a LOCF model
LatentDynamics.eval_reconstructed_prediction — Functioneval_reconstructed_prediction(m::odevae, testdata::SMATestData, n_future_tps::Int=1)Evaluate the prediction performance of the model using the reconstructed data obtained from the decoder.
Arguments
m::odevae: trainedodevaemodeltestdata:SMATestDataobject containing the SMArtCARE datan_future_tps::Int=1: number of future time points to predict
Returns
Vectors of prediction errors of different models for each patient (summed over all time points):
ODEprederrs: vector of prediction errors for the ODE modelOLSprederrs: vector of prediction errors for an OLS model, also fitted in a piecewise manner similar to the ODE modelinterceptprederrs: vector of prediction errors of an intercept modellocfprederrs: vector of prediction errors of a LOCF model